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Abstract—In natural vision, we center our fixation on the most 
informative points in a scene in order to reduce our overall 
uncertainty about the scene and help interpret it. Even if we are 
looking for a specific stimulus around us, we face a great 
amount of uncertainty since that stimulus could be in any spatial 
location. Visual attention (VA) schemes have been proposed by 
researchers to account for the ability of the human eye to 
quickly fixate on informative regions. Recently, VA in images, 
and especially saliency-based VA, became an active research 
topic of the computer vision community. The proposed work 
provides an extension towards VA in video sequences by 
integrating spatiotemporal information. The potential 
applications include video classification, scene understanding, 
surveillance and segmentation. 
 
 

I. INTRODUCTION 

Despite the common belief that we see everything around us, 
only a small fraction of the surrounding visual information is 
processed by the human optical system at any time and aids 
the reduction of the overall uncertainty about the semantic 
understanding of the scene. Selecting this small fraction of 
important information is the main task of the visual attention 
process (selective attention). Processing, analyzing and 
understanding the visual content of a scene depicted either in 
a still image or a video sequence presents inherent 
difficulties, due to camera and object motion, deformations 
and occlusions. State of the art motion estimation, 
segmentation, tracking, feature matching, classification and 
object recognition algorithms are still unable to handle the 
uncertainty introduced by the above factors in a robust and 
efficient way. VA can help in this direction by detecting 
regions of interest and limiting all processing steps in such 
regions. 

Current computational models concern either still images, 
or video sequences where each input frame is processed 
sequentially, in a serial manner. Consequently, the regions to 
be attended are extracted for each frame and the dynamic 
nature of the attention process can only be inferred by linking 
together the corresponding results, which is a tedious task. 
Such methods are prone to noise and can lead to high 
computational complexity if e.g. motion estimation is one of 
the prerequisites. It would be desirable to have a general 
framework that will overcome certain pitfalls and provide a 
reliable way to analyze the spatial and temporal organization 

of a video. We believe that an extended VA model, which 
treats the temporal dimension of a sequence as an intrinsic 
feature will provide the basis for such a unifying framework. 
Under such a framework, the reduction in visual uncertainty 
inferred by locating and analyzing only the interesting events 
in a sequence will aid the further processing of video data. 

Saliency-based selective attention, based on the feature 
integration theory of Treisman et al. [1], has been computationally 
modeled in the last decade by Itti and Koch [3, 4], and seems to 
provide a reasonable first step towards the elucidation and 
understanding of the visual input. Koch & Ullman [2] have 
suggested a model based on this theory, leading to the generation of 
a master saliency map that encodes the saliency of image regions. 
Meaningful objects (conjunction of features) are identified at a 
second stage, which requires focused attention. At the interface 
between the first and second stages there is a bottleneck functioning 
as a gate allowing only part of the visual information to proceed to 
the second stage. 

In this paper we elaborate on our previous work, [9], 
which is based on Itti et al.’s scheme. We propose an 
extension of our spatiotemporal visual attention model by 
including 3D orientation information and present various 
interesting results. Under the spatiotemporal framework, we 
treat the video sequence as a video volume with temporal 
evolution (frame number) being the third dimension. 
Specifically, the dimensions of width and height are the usual 
x- and y- axes of a video frame. The third dimension (depth) 
is derived by layering the frames sequentially in time, 
constructing a x-y-t space. Consequently, the movement of a 
region or object can be regarded as a volume carved out from 
the 3D space. It has to be mentioned that the proposed model 
is limited to bottom-up control of attention, like the one of Itti 
et al., which means that no volitional component (e.g. a 
priori knowledge) is incorporated. Furthermore, we are only 
concerned with the localization of the events to be attended 
and not their identification. 

Section 2 of this paper describes the architecture of the 
proposed spatiotemporal VA framework, as well as its 
extension with 3D orientation features. Section 3 provides a 
set of experimental results on video sequences to illustrate the 
performance of the proposed model, comparing to other 
approaches. Finally, conclusions are drawn in Section 4.  

 
II. SPATIOTEMPORAL VA FRAMEWORK 
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The architectrure of the proposed spatiotemporal VA 
model is presented below, including all intermediate 
processing steps. The extension of this model with the 
addition of 3D orientation information to handle motion in 
the spatiotemporal domain is discussed next. 
A. VA Architecture 

Given an arbitrary input sequence, the first processing step 
consists of slicing it into a set of video shots using a common 
shot-detection technique [8]. The number of frames to be 
processed with the proposed computational model can be the 
same as the length of the corresponding shot, or a number  
that is sufficient to adequately represent object trajectories. 
The acquired frames form a video volume as explained 
above. This volume is decomposed into a set of distinct 
“channels” by using linear filters tuned to specific stimulus 
dimensions, such as luminance, red, green, blue, yellow hues 

and various orientations. The number and response properties 
of these filters have been chosen according to what is known 
of their neuronal equivalents in the early stages of visual 
processing in primates, as explained in [2]. Each of these 
feature volumes encodes a certain property of the video.  

After obtaining the spatiotemporal data formation, the 
input volumes are morphologically filtered by a flat zone 
approach as in [6], so as to avoid spurious details or noisy 
areas that might otherwise be erroneously attended by the 
proposed system. Afterwards, following the structure of the 
static image-based approach of Itti & Koch, we generate 
feature volumes for each feature of interest, including 
intensity, color and 2D/3D orientation, as explained in section 
2.1. Each of them encodes a certain property of the video. 
Every volume simultaneously represents the spatial 
distribution and temporal evolution of the encoded feature. A 
normalization operator is responsible for enhancing the most 
salient subvolumes inside them so as to prohibit non-
important regions from drastically affecting the result. 

The process described above is performed at a number of 
different spatiotemporal scales, to allow the model to 
represent smaller and larger “events” in separate subdivisions 
of theses channels. This multiple scale representation is 
obtained through Gaussian pyramids. Center-surround 
operations, which are suitable for detecting locations that 
locally stand out from their surroundings, are implemented as 
differences between a fine and a coarse scale for a given 
feature. Finally, a linking stage fuses the separate volumes 
and produces a salient one that represents interesting events 
as enhanced (in terms of intensity) spatiotemporal regions. 
Fig. 1 illustrates all intermediate steps of the proposed model. 
 
B. 3D Orientation 

Orientation in a spatiotemporal domain can be calculated in 
2D by extracting oriented edges at each frame and 
superimposing the results, as indicated in [9], and by direct 
3D filtering of the video volume. 3D filtering is related to 
motion analysis tasks since orientation in space-time 
corresponds to velocity [7]. In order to get the orientation one 
needs an appropriate three-dimensional steerable filter set and 
a method to extract a measure of orientation out of the filters’ 
output. Although motion is of fundamental importance in 
biological vision systems and contributes to visual attention, 
[11], it is not included as a feature map in the saliency-based 
computational model of Itti et al. [3]. Elsewhere we have 
used motion for event analysis purposes [10]. Actually, 
motion/velocity description of the objects can be directly 
extracted by the 3D orientation volume as described in [12], 
therefore avoiding the need for independent optical flow 
computation. 
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Fig. 1. Spatiotemporal VA: step-by-step. 

Spatiotemporal volumes can be seen as a composition of 
numerous simple structures like planes, textures, edges and 
lines. Therefore multiple oriented structures may be present 
at a single point. The volume can be either decomposed into 
images, as traditionally carried out, or into overlapping 3D 
local neighborhoods. Loosely, a neighborhood of voxel v is 
defined as the proximate voxels surrounding v. By using 3D 
connectivity, we can apply 3D morphological operations at 
every volume to achieve computationally efficient results. 
We filter the volume with rotated versions of an orientation-
selective morphological structuring element and produce a 

 
Fig. 2. Five of the nine main 3D orientations used; not all 
of them are shown for illustrative purposes. 



result with enhanced oriented subvolumes being the result 
of the objects’ path in the scene. 3D Cylinder-shaped 
structuring elements are used in order to obtain the desired 
3D orientations of the video volume. Five of the nine main 
orientations used are illustrated in Fig. 2. 
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Fig. 4. (a)-(c) Generation of mask (see text) for visualization 
purposes; (d) the initial frame and corresponding slices for 
each of the feature and saliency volumes. 

 
 

III. RESULTS 

In order to illustrate the three-dimensional aspect involved in 
the proposed architecture we show representative views of 
the saliency volume obtained from a simple sequence 
acquired by a static camera. The “truck” sequence shows two 
toy-trucks moving towards opposite directions. A static box 
in the middle of the scene occludes one of them. Three 
representative frames of the sequence are shown in Fig. 3a, 
the semi-transparent volume of the original sequence in Fig. 
3b, and the saliency volume under three different angles Fig. 
3c-e. All of them are negative and transparent versions of the 
original saliency volume, for visualization purposes. The 
route of the first truck, which is visible throughout the 
sequence, is highlighted as a consistent black cylinder at the 
top-right volume. The temporal evolution of both moving 

trucks is shown clearly at the bottom-left image, while the 
vertical pattern generated by the static box is illustrated at the 
bottom-right subfigure. 
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Fig. 3 (a) Three representative frames of the sequence; (b) 
unprocessed video volume; (c)-(e) saliency volume 
observed from 3 different angles. The volumes are 
negative and transparent versions of the original saliency 
volume for visualization purposes. 

Despite of the simplicity of the previous example, it 
becomes obvious that the uncertainty involved in the 
understanding of the current scene can be greatly reduced. A 
segmentation or recognition algorithm should  process only 
the salient regions (subvolumes) of the initial video. 

Illustrating the power of the proposed spatiotemporal VA 
architecture is not easy due to the three dimensional data and 
the inherent visualization problems. Hence, we present the 
results by using a semi-transparent mask, which is directly 
acquired from the corresponding x-y slice of the saliency 
volume. More specifically, the saliency volume of a sequence 
looks like the one illustrated in Fig. 4a. The intensity of each 
voxel is related to the saliency of that pixel. For visualization 
purposes, we interpolate the volume and produce one with the 
same dimensions as the input sequence (Fig. 4b). Slicing this 
volume across the temporal dimensions at every time frame 
produces a saliency map for each of the input frames (Fig. 
4c). Superimposing this map on the corresponding frame 
generates the desired result, as shown in Fig. 4ds. Non-salient 
areas appear dark, while salient ones preserve (almost 
thoroughly) their original intensity. It is important to mention 
that no thresholding is applied to the final masks. 

The “table tennis” sequence presents a whole range of 
situations that makes it a challenging stream. Many of the 
regions of interest are discontinuous and rapidly changing. 
An interesting part of the sequence is the zooming out effect 
appearing approximately after the first 25 frames. The camera 
zooms out, but remains focused on a region between the ball 
and the bat. The challenge is to consistently distinguish the 
ROIs without being affected by the camera motion (zoom 
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Fig. 5. Results on the “table-tennis” sequence (numbers 
correspond to frames). Row-wise: original frame, saliency 
map and magnitude of the motion map 

out). The first two columns of Fig. 5 show the original frame 
and the corresponding saliency mask derived from the 
saliency volume, respectively. The spatiotemporal VA system 
focuses at the player and the poster on the left even during the 
camera zoom-out (frames 25-86). Consistent distinction of 
the player and the incoming poster from the left can be 
achieved without being affected by camera operations as 
observed throughout the sequence.  

Several proposed tracking techniques use motion 
information as an automatic initial guess for an object’s 
position or for improving an incremental tracking approach 
[13, 14]. Generally speaking, motion estimation methods are 
computationally intensive and prone to noise. Although the 
moving objects in a sequence are usually important and have 
to be tracked there are cases that static objects (e.g. a scene 
with a camera pan showing a moving object and a 
photo/painting on the wall) play also a considerable role.  

In an attempt to emphasize the power of VA as a 
preprocessing step we provide a short discussion on the 
spatiotemporal VA’s results of the “table tennis” sequence 
and the advantages it offers against a robust motion 
estimation technique that is used as an initial step in a 
tracking approach we proposed in [13]. The magnitude of the 
motion field (square root of motion vectors in x- and y- 
directions) generated by Black & Anandan’s method [15] is 
shown in the third column of Fig. 5. Notice how the zooming 
effect (frames 55, 75) affects the motion field and how hard it 
is to automatically distinguish the objects even with a refined 
motion segmentation technique. Spatiotemporal VA focuses 
on the salient objects (player, poster) without being affected 
by the overall change of the scene. The rest of the frames 
illustrate the ability of the VA to focus on objects that do not 
differ in terms of motion from the background. The motion 
estimation result can be correctly used for locating and 
tracking the player, but it provides no information on the 
poster at the right. Hence, the proposed spatiotemporal VA 
provides a richer representation of the scene, in terms of 
salient regions, that can aid a refined segmentation based on 
low-level (feature volumes) or high-level (e.g. knowledge 
about the relative position of static-dynamic objects etc.) 
information. 
 

IV. CONCLUSIONS 

Extracting regions of interest in video is very important for 
various applications ranging from video surveillance to 
retrieval and summarization. VA schemes have been proved 
to be suitable for static scene processing. We expect that their 
extension to video, as proposed in [9], with the addition of 
the 3D orientation information will serve as a platform for 
treating video related processing tasks in a more efficient 
way. 

Further experimentation is required to further prove the 
efficiency of the implemented model and put up new 
applications in the field including segmentation, tracking and 
summarization. Nevertheless, the proposed model is limited 
to bottom-up control of attention. Furthermore, we are only 
concerned with the localization of the events to be attended 

and not their identification. Future work should focus on the 
incorporation of a top-down component (a priori knowledge) 
in order to select regions not only due to their saliency but 
also by means of semantics related to the scene. 
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